Background/Problem area
To meet the demands of their customers, many paper producers must offer a broad variety of grades and realize increas-
ingly smaller lot sizes. The paper grades made on a single machine are sometimes used for several different applications,
which limits the choice of suitable raw materials and treatment methods, and certification requirements for e.g. food contact
make it difficult to realize several different grades on the same production line within short periods.
The frequent grade changes required in this situation result in constantly growing amounts of broke. Mills can use these
broke materials only for lower-quality products which must be sold at markdown prices. The reason for this is the additives,
coating binders, optical brighteners and other aids contained in broke. Once added to achieve the desired optical, barrier,
sizing or wet strength effects, the chemicals end up as sticky contaminants or dirt specks in the paper or cause frequent
web breaks in mills using high amounts of broke.
Starting point of the project is the fact that cavitation effects offer great potential for the treatment of internal stock flows.
However, the requirements and input parameters of stock preparation plants vary greatly - the material flows to be treated
can have so different compositions that treatment aims and technologies must be specifically selected or adapted for each
application.
Moreover, it is necessary to look at the economic side, i.e. the profitability and treatment effects achievable by a technology
for the desired throughput and with the investment/operating/maintenance costs required for each application, which can
vary greatly as well. Generally, one must distinguish between hydrodynamic cavitation (venturi tubes or perforated plates,
though the latter seem less suitable here) and acoustic cavitation (ultrasound, using rod transducers or flow cells).

Objectives/Research results
Aim of the research project is the use of hydrodynamic and acoustic cavitation effects for efficient desintegration of wet
strength paper broke. In that way a new technology alternative for breaking down wet strength paper flocs into single fibers
is tested. Suitable working parameters for lab scale devices for acoustic and hydrodynamic cavitation are worked out. Pos-
sible side effect can be the reduction of optical brightener in the final paper by detaching these substances from fibers sur-
face by cavitation effects.
The corresponding effects of acoustic and hydrodynamic cavitation processes will be compared to assess their economic
efficiency as basis for future investment decisions. First results showed a fast flake reduction by acoustic and hydrodynamic
cavitation.

Application/Economic benefits
The use of a simple technology that requires little investment like cavitation jets for the optimised treatment of internal broke
flows will enable paper producers to stabilize their productions and minimize variations in the quality characteristics of their
products. Besides increasing the plant availability and technically feasible production output, this will also enable them to
use further fixing agents and other aids.


Remarks
The RTD project INFOR 190 is being funded by the curatorship of research and technique of the pulp and paper industry
within VDP e. V.